Các dạng bài tập Vectơ chọn lọc có lời giải
Xem Tóm Tắt Bài Viết Này
- 1 Các dạng bài tập Vectơ chọn lọc có lời giải
- 1.1 Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng
- 1.2 A. Phương pháp giải
- 1.3 B. Ví dụ minh họa
- 1.4 Bài tập về Quy tắc hình bình hành của vecto
- 1.5 A. Phương pháp giải
- 1.6 B. Ví dụ minh họa
- 1.7 Cách phân tích một vecto theo hai vecto không cùng phương
- 1.8 A. Phương pháp giải
- 1.9 B. Ví dụ minh họa
- 1.10 Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com
Các dạng bài tập Vectơ chọn lọc có lời giải
Bài giảng: Bài 1: Các định nghĩa vectơ – Thầy Lê Thành Đạt (Giáo viên VietJack)
Phần dưới là Chuyên đề tổng hợp Lý thuyết và Bài tập Toán 10 Đại số Chương 1: Vectơ có đáp án. Bạn vào tên bài hoặc Xem chi tiết để theo dõi các chuyên đề Toán lớp 10 Đại số tương ứng.
Chứng minh 2 vecto cùng phương, 2 vecto cùng hướng
A. Phương pháp giải
Định nghĩa:
– Giá của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó . – Hai vecto được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau . – Hai vecto cùng phương hoàn toàn có thể cùng hướng hoặc ngược hướng . – Quy ước: Vecto – không (ký hiệu ) cùng phương, cùng hướng với mọi vecto. |
Ba vecto được gọi là cùng phương với nhau Vecto cùng hướng với , vecto ngược hướng với vecto |
Phương pháp giải:
Để chứng minh hai vecto cùng phương, ta chứng minh giá của hai vecto đó song song hoặc trùng nhau. ( quan hệ từ vuông góc đến song song, cùng song song với 1 đường thẳng thứ ba, định lí Talet, tính chất đường trung bình của tam giác, hình thang, các góc vị trí so le trong – đồng vị bằng nhau ….)
Để chứng minh hai vecto cùng hướng, ta chứng minh hai vecto đó cùng phương và xét hướng của hai vecto đó.
B. Ví dụ minh họa
Ví dụ 1: Cho lục giác đều ABCDEF tâm O. Số các vecto khác không, cùng phương với vecto có điểm đầu và điểm cuối là các đỉnh của lục giác là:
A. 4
B. 6
C. 8
D. 10
Hướng dẫn giải:
Do ABCDEF là lục giác đều tâm O Suy ra BE / / CD / / AF Do đó OB / / CD / / AF Do đó những vecto cùng phương với vecto mà có điểm đầu và điểm cuối là đỉnh của hình lục giác là những vecto : Vậy có 6 vecto . Đáp án B |
Ví dụ 2: Cho hai vecto không cùng phương , . Khẳng định nào sau đây đúng?
A. Không có vectơ nào cùng phương với cả hai vectơ .
B. Có vô số vectơ cùng phương với cả hai vectơ .
C. Có một vectơ cùng phương với cả hai vectơ , đó là vectơ .
D. Cả A, B, C đều sai .
Hướng dẫn giải:
+ Theo quy ước, vecto cùng phương, cùng hướng với mọi vecto (lý thuyết), do đó đáp án C đúng, từ đó suy ra đáp án A và D là đáp án sai.
+ Đáp án B: có vô số vecto cùng phương với cả hai vecto là sai
Thật vậy, giả sử có 1 vecto cùng phương với cả hai vecto
Gọi giá của vecto là đường thẳng m, giá của vecto là đường thẳng a, và giá của vecto là đường thẳng b.
Khi đó mâu thuẫn với giả thiết hai vecto không cùng phương.
Đáp án C
Bài tập về Quy tắc hình bình hành của vecto
A. Phương pháp giải
Áp dụng quy tắc hình bình hành và những đặc thù của hình hình hành đã học ở lớp 8 để giải bài tập .
Quy tắc hình bình hành Nếu ABCD là hình bình hành thì ta có Quy tắc này cũng đúng nếu ta xuất từ những |
B. Ví dụ minh họa
Ví dụ 1: Cho hình bình hành ABCD tâm O. Tính các vecto sau
Hướng dẫn giải:
a, theo quy tắc hình bình hành
b, Vì AB // CD nên ta có
Do đó:
c,
= (sử dụng tính chất giao hoán)
= (quy tắc ba điểm)
d ,
Vì ABCD là hình bình hành tâm O nên O là trung điểm của AC
Suy ra AO = OC
Ta có: (tính chất giao hoán)
= (quy tắc ba điểm)
Ví dụ 2: Cho hình chữ nhật ABCD có AB = 4a và AD = 3a. Tính độ dài
Hướng dẫn giải:
ABCD là hình chữ nhật, suy ra ABCD cũng là hình bình hành, nên ta áp dụng quy tắc hình bình hành ta được:
Suy ra = AC
Ta lại có: AC =
Vậy = 5a.
Cách phân tích một vecto theo hai vecto không cùng phương
A. Phương pháp giải
Sử dụng định lý về nghiên cứu và phân tích vecto :
Phân tích vecto: Cho hai vecto không cùng phương , . Khi đó mọi đều được phân tích duy nhất:
Sử dụng quy tắc hình bình hành, quy tắc 3 điểm,công thức trung điểm, trọng tâm…
Nếu hai vecto ; cùng hướng và
Nếu hai vecto ; ngược hướng và
B. Ví dụ minh họa
Ví dụ 1: Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích vecto theo hai vecto .
Hướng dẫn giải:
Vì M là trung điểm của AC nên
Vì K là trung điểm của BC nên
Ví dụ 2: Cho hình bình hành ABCD. Gọi M, N là các điểm nằm trên các cạnh AB và CD sao cho AM = AB, CN = CD. Gọi G là trọng tâm của tam giác BMN. Hãy phân tích theo hai vecto .
Hướng dẫn giải:
Ví dụ 3: Cho tam giác ABC. Gọi I là điểm trên cạnh BC sao cho 2CI = 3BI và J là điểm nằm trên tia đối của BC sao cho 5JB = 2JC. Phân tích vecto theo
Hướng dẫn giải:
Xem thêm những dạng bài tập Toán lớp 10 tinh lọc, có giải thuật hay khác :
Giới thiệu kênh Youtube VietJack
Ngân hàng trắc nghiệm lớp 10 tại khoahoc.vietjack.com
Đã có app VietJack trên điện thoại cảm ứng, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi trực tuyến, Bài giảng …. không lấy phí. Tải ngay ứng dụng trên Android và iOS .
Nhóm học tập facebook miễn phí cho teen 2k6: fb.com/groups/hoctap2k6/
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Theo dõi chúng tôi không tính tiền trên mạng xã hội facebook và youtube :
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Source: https://sangtaotrongtamtay.vn
Category: Giáo dục